Adult Neurogenesis
COLD SPRING HARBOR MONOGRAPH SERIES

Ribosomes
RNA Phages
RNA Polymerase
The Operon
The Single-Stranded DNA Phages
Transfer RNA:
 Structure, Properties, and Recognition
Biological Aspects
Molecular Biology of Tumor Viruses, Second Edition:
 DNA Tumor Viruses
 RNA Tumor Viruses
The Molecular Biology of the Yeast Saccharomyces:
 Life Cycle and Inheritance
 Metabolism and Gene Expression
Mitochondrial Genes
Lambda II
Nucleases
Gene Function in Prokaryotes
Microbial Development
The Nematode Caenorhabditis elegans
Oncogenes and the Molecular Origins of Cancer
Stress Proteins in Biology and Medicine
DNA Topology and Its Biological Effects
The Molecular and Cellular Biology of the Yeast Saccharomyces:
 Genome Dynamics, Protein Synthesis, and Energetics
 Gene Expression
 Cell Cycle and Cell Biology
Transcriptional Regulation
Reverse Transcriptase
The RNA World
Nucleases, Second Edition
The Biology of Heat Shock Proteins and Molecular Chaperones
Arabidopsis
Cellular Receptors for Animal Viruses
Telomeres
Translational Control
DNA Replication in Eukaryotic Cells
Epigenetic Mechanisms of Gene Regulation
C. elegans II
Oxidative Stress and the Molecular Biology of Antioxidant Defenses
RNA Structure and Function
The Development of Human Gene Therapy
The RNA World, Second Edition
Prion Biology and Diseases
Translational Control of Gene Expression
Stem Cell Biology
Prion Biology and Diseases, Second Edition
Cell Growth: Control of Cell Size
The RNA World, Third Edition
The Dog and Its Genome
Telomeres, Second Edition
Genomes
DNA Replication and Human Disease
Translational Control in Biology and Medicine
Invertebrate Neurobiology
The TGFβ Family
Molecular Biology of Aging
Adult Neurogenesis
Adult Neurogenesis

Edited by

Fred H. Gage
Salk Institute for Biological Studies

Gerd Kempermann
Center for Regenerative Therapies Dresden

Hongjun Song
Johns Hopkins School of Medicine

COLD SPRING HARBOR LABORATORY PRESS
Cold Spring Harbor, New York • www.cshlpress.com
We dedicate this monograph to the memory of Peter Eriksson, a good friend and colleague who passed away unexpectedly. He generously contributed to our knowledge of Human Adult Neurogenesis.
Contents

Preface, xi
F.H. Gage, G. Kempermann, and H. Song

1 Adult Neurogenesis: A Prologue, 1
F.H. Gage, H. Song, and G. Kempermann

METHODS

In vivo approaches

2 Numerology of Neurogenesis: Characterizing the Cell Cycle of Neurostem Cells, 7
R.S. Nowakowski and N.L. Hayes

3 Detection and Phenotypic Characterization of Adult Neurogenesis, 25
H.G. Kuhn and D.A. Peterson

4 Evolving Methods for the Labeling and Mutation of Postnatal Neuronal Precursor Cells: A Critical Review, 49
J.J. Breunig, J.D. Macklis, and P. Rakic

5 The Use of Reporter Mouse Lines to Study Adult Neurogenesis, 81
G. Enikolopov and L. Overstreet-Wadiche

6 Retrovirus-mediated Cell Labeling, 101
C. Zhao

In vitro approaches

7 Neurospheres, 119
I. Singec and A. Quiñones-Hinojosa
viii Contents

8 Monolayer Cultures of Neural Stem/Progenitor Cells, 135
 J. Ray

BASIC PROCESSES

9 Neurogenesis in the Adult Hippocampus, 159
 G. Kempermann, H. Song, and F.H. Gage

10 Adult Subventricular Zone and Olfactory Bulb Neurogenesis, 175
 D.A. Lim, Y.-C. Huang, and A. Alvarez-Buylla

11 Neurogenic Niches in the Adult Mammalian Brain, 207
 D.K. Ma, G.-l. Ming, F.H. Gage, and H. Song

MOLECULAR AND PHYSIOLOGICAL MECHANISMS

12 Adult Neurogenesis: Similarities and Differences in Stem Cell
 Fate, Proliferation, Migration, and Differentiation in Distinct
 Forebrain Regions, 227
 D.C. Lie and M. Götz

13 Proneuronal Genes Drive Neurogenesis on the Road from
 Development to Adulthood, 267
 E.T. Buchen and S.J. Pleasure

14 The Balance of Trophic Support and Cell Death in Adult
 Neurogenesis, 283
 H.G. Kuhn

15 Maturation and Functional Integration of New Granule Cells
 into the Adult Hippocampus, 299
 J. Bischofberger and A.F. Schinder

REGULATION

16 Genetics and Epigenetics in Adult Neurogenesis, 321
 J. Hsieh and J.W. Schneider

17 Activity Dependency and Aging in the Regulation of Adult
 Neurogenesis, 341
 G. Kempermann
18 Regulation of Hippocampal Neurogenesis by Systemic Factors Including Stress, Glucocorticoids, Sleep, and Inflammation, 363
P.J. Lucassen, C.A. Oomen, A.-M. van Dam, and B. Czéh

19 Regulation of Adult Neurogenesis by Neurotransmitters, 397
M.-H. Jang, H. Song, and G.-I. Ming

FUNCTIONAL SIGNIFICANCE

20 Adult Neurogenesis in the Olfactory Bulb, 425
P.-M. Lledo

21 Neurogenesis and Hippocampal Memory System, 445
D.N. Abrous and J.M. Wojtowicz

22 Computational Modeling of Adult Neurogenesis, 463
J.B. Aimone and L. Wiskott

NEUROLOGICAL DISEASES

23 Hippocampal Neurogenesis: Depression and Antidepressant Responses, 483
A. Sahay, R. Hen, and R.S. Duman

24 Adult Neurogenesis in Neurodegenerative Diseases, 503
P. Brundin, J. Winkler, and E. Masliah

25 Epilepsy and Adult Neurogenesis, 535
S. Jessberger and J.M. Parent

26 Neurogenesis following Stroke Affecting the Adult Brain, 549
O. Lindvall and Z. Kokaia

COMPARATIVE NEUROGENESIS

27 Adult Neurogenesis in Teleost Fish, 571
G.K.H. Zupanc

28 Neurogenesis in the Adult Songbird: A Model for Inducible Striatal Neuronal Addition, 593
S.A. Goldman
x Contents

29 Adult Human Neurogenesis: A Response to Cell Loss and New Circuitry Requirements?, 619
 M.A. Curtis, P.S. Eriksson, and R.L.M. Faull

30 Adult Hippocampal Neurogenesis in Natural Populations of Mammals, 645
 I. Amrein, H.-P. Lipp, R. Boonstra, and J.M. Wojtowicz

Index, 661
THE TERM “ADULT NEUROGENESIS” IS USED TO DESCRIBE the observation that, in the adult mammalian brain, new neurons are born from stem cells residing in discrete locations and these new neurons migrate, differentiate, and mature into newly integrated, functioning cells. By virtue of this definition, adult neurogenesis is a process, not an event, and as such, can be dissected and examined in evermore discrete components. In general, researchers seek a complete understanding of not only the details of these separate components but also the purpose and function of this process as a whole. Once the tools became available to monitor and measure adult neurogenesis, the interest in this process grew enormously, not the least because the birth and integration of new neurons in the adult brain constitute the most extreme cases of neuroplasticity in the adult brain. While the phenomenon is interesting enough to investigate and understand in the normal, healthy brain, the fact that this process is also disrupted in many disease states adds substantially to the numbers of those studying adult neurogenesis. As a result, a new way of looking at brain therapy has emerged that incorporates the potential of generating new neurons in the context of aging and disease into the search for a strategy for “self-repair.”

The idea for this book originated from a meeting on adult neurogenesis in the adult brain held at the Banbury Conference Center at Cold Spring Harbor Laboratory in February 2006. In the secluded and intimate setting of this event, the organizers sought to assemble an overview of the field as it stood at the time. The likely impermanence of this contribution did not deter us because it seemed necessary to bring together a number of leading researchers to make an attempt to define our growing field. The great success of the conference made it clear that the conclusions from the meeting should be disseminated to a wider audience in the form of a book. This decision also allowed us to expand the range
of topics beyond those covered in the meeting and recruit more colleagues who had made important contributions to the field.

The 30 chapters in this volume provide an incomplete yet valuable overview of the field of adult neurogenesis research. Wherever possible, we teamed up authors on related topics who have either not yet worked together or did so long ago. Our aim was to help integrate the field by mapping its current scope and its diverging ideas, and we hope our selections do not reflect too much of our personal opinions and biases.

We would like to thank the staff at Cold Spring Harbor Laboratory Press for their advice and diligence, particularly John Inglis, Alex Gann, Denise Weiss, Kaaren Hegquist, Lauren Heller, Mary Cozza, and Joan Ebert. We would also like to thank the authors of all the chapters in the monograph for their thoughtful and scholarly presentations of often controversial and still emerging concepts surrounding this new field of adult neurogenesis.

Fred H. Gage
Gerd Kempermann
Hongjun Song